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Variational Inequality

Find point x* € IC satisfying

g(x) — g(x*) + (F(x*),x — x*) > 0, for all x € K, (1)

e K C RYis a convex set,

o g: RY » RU{+o0} is a proper lower semi-continuous convex
function,

o F: K — R? is monotone operator, i.e. (F(x)— F(y),x —y) >0 for
all x,y € K.
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Variational Inequality

Find point x* € IC satisfying

g(x) — g(x*) + (F(x*),x — x*) > 0, for all x € K, (1)

e K C RYis a convex set,

o g: RY » RU{+o0} is a proper lower semi-continuous convex
function,

o F: K — R? is monotone operator, i.e. (F(x)— F(y),x —y) >0 for
all x,y € K.

Stochastic setting:
F(x) = E¢ [F(x; €)]- (2)
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@ Convex minimization:
min f(x 3
min (), ()
where X € R? is a convex set, f: X — R is a convex function.

F(x) = Vf(x).
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@ Convex minimization:

)r(’réi)r} f(x), (3)

where X € R? is a convex set, f: X — R is a convex function.

F(x) = Vf(x).

@ Convex-concave saddle point problem:

i f(x,y), 4
min max (x,¥) (4)

where X C R% and ) € RY are convex sets, f: X x Y — R is
convex in x and concave in y.
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Extragradient Method

Algorithm 1 Extragradient Method for Variational Inequalities.

1: Parameters: x° € K, stepsize n > 0
2: fort=0,1,2,... do

3 yt = prox,, (x* —nF(x"))

4 xth = prox,g (Xt - nF(yt))

5. end for

Dmitry Kovalev ICCOPT August 5, 2019 4/19



Stochastic Extragradient Method

Algorithm 2 Stochastic Extragradient Method for Variational Inequalities.

. Parameters: x° € K, stepsize n > 0
:fort=0,1,2,... do

Sample &

yt = prox,g (x* —nF(x*;£Y))

X = proxe (x* = nF(y*% <)
end for

A A
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Convergence

Theorem (strongly-monotone case)

Assume that g is a p-strongly convex function, operator F(-; &) is almost
surely monotone and L-Lipschitz, and that its variance at the optimum x*
is bounded, i.e.

E[|F(x*;€) = F(x)|? < o
Then, for any n < 1/(2L)

Eflxt — x*|2 < (1 — 2m/3)" [[x0 = x*|12 4 3097
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Convergence

Theorem (weakly-monotone case)

Let g be a convex function, F(-; &) be monotone and L-Lipschitz almost
surely. Then, the iterates of Algorithm 2 with stepsize n = O(Y/(v/tL))
satisfy for any set X

at L2
sup (659 - £() + (FG0,2° — )} < iz sup { S = xlP 4 2.

where &' = 1 3"} y* and o2 d:ef]EHF(x) — F(x;6)|1?
variance of F at point x.

, l.e. a is the
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Bilinear Min-Max Problem

min max f(x, y) =x'By+a'x+b'y, (5)
x oy

where B is a full rank square matrix.

Algorithm 3 The extragradient method for min-max problems.

Require: Stepsizes 71, 1, initial vectors x°, y°
1: fort=0,1,... do
2: ut = xt —m Ve f(xtyt)
3 vi =yt +mV, f(xt, yt)
4: Xt = xt — W, f(ut, vt)
5 yt—i-l — yt 4 nzvyf(ut, vt)
6: end for
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Bilinear Min-Max Problem

Theorem

Let f be bilinear with a full-rank matrix B and apply Algorithm 3 to it.

Choose any m1 and my such that 1y < Yomx(B) and nim2 < 2/omax(B)?, then
the rate is

IxE = X112+ Iy =y 117 < 2 (IX° = x*112 + [ly° = y*I1%),

where p &
max{(1—n1720max(B)?)?+1130max(B)?, (1= 11720 min(B)?)? +n30min(B)*}.

v
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Bilinear Min-Max Problem

Corollary

Under the same assumption as in Theorem 3, consider two choices of
stepsizes:

Q ifn1 = n2 = 1/(v20mx(B)) we get

I =12+ fly* = y*[I? <
2 * *
(1 — 7min(®)/60man(8)?)" (11X = x*[12 + [ly® = y*[1?),

Q ifomin(B) > 0, and n1 = £/(vV20max(B)?), M2 = 1/(v2komax(B)?) with
def 2
K

= %nin@®)/02,,) then the rate is

||Xt . X*||2 + ||yt . y*||2
(1 — omin(B) /40'max(B ) (HX *||2 + ||y0 - y*”2)

Dmitry Kovalev
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Non-convex minimization

mXinEff(X;f), (6)

where f(+; £) is smooth but potentially non-convex function.

Assumption (bounded variance)

There exists a constant o > 0 such that for all x it holds

E||Vf(x; &) — VF(x)||? < o2.
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Non-convex minimization

Theorem

Choose n < ﬁ and apply extragradient to (6). Then, its iterates satisfy
B VAP < 2(F) — £7) + Linlo?,
n

where Xt is sampled uniformly from {x°, ..., xt=1} and f* = inf, f(x).

If we choose 1 = © (1/(Lv/7)), then the rate is O ((F(6)—=F)/ i + 0%/ /%),
which is the same as the rate of SGD under our assumptions.

Dmitry Kovalev ICCOPT August 5, 2019 12/19



Experiments: Bilinear Min-Max Problem
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Figure: Comparison of using independent samples and averaging as suggested
by [Juditsky et al., 2011] and the same sample as proposed in this work. The
problem here is the sum of randomly sampled matrices min, max, >, xTBiy.
Since at point (x*, y*) the noise is equal 0, the convergence of Algorithm 3 is
linear unlike the slow rate of [Juditsky et al., 2011]. '"EGm’ is the version with
negative momentum equal 8 = —0.3.
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Experiments: Generating Mixture of Gaussians

LR

Figure: Top line: extragradient with the same sample. Middle line: gradient
descent-ascent. Bottom line: extragradient with different samples. Since the
same seed was used for all methods, the former two methods performed extremely
similarly, although when zooming it should be clear that their results are slightly
different.
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Experiments: Adam vs ExtraAdam
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Figure: Adam and ExtraAdam results of training conditional GAN for two epochs.
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Experiments: Adam vs ExtraAdam

(b) ExtraAdam

Figure: Adam and ExtraAdam results of training self attention GAN for two
epochs.
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Figure: Adam and ExtraAdam results of training self attention GAN for two
epochs.
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Experiments: Adam vs ExtraAdam

(b) ExtraAdam

Figure: Adam and ExtraAdam results of training self attention GAN for two
epochs.
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